‘AD-RL69 264 A SOFTHARE INPLEMENTRTION OF AN INTERACTIVE GRAPHICS 11
S STEM FOR THREE DIMENSIONAL MWODELING AND UWDUT(U)
NAVAL POSTGRADUATE SCHOOL MONTEREY CA S MUNGSI
UNCLASSIFIED MAR 86 F/

A
\q.....\...'..sw\ ",
O XX
anas Ny
AR AL P A
a8 &0

‘s
42405

3
¥

CHT

| S FFE

: =EEFE

. X 4-
J m—mu.._-._..-.......u -
: 2l = o
: - =Ml ~ :
:

a

s

»

v

.

J

r

{

’

2

*

&

EJ

s

-

¥

B

>

<

»

‘A

h

Py A . PP N -

Pa W TR TP TITIF TNTITITN

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

AD-A169 264

CTIC
~LECTE
JUL 02 1988

D

P s &GN

THESIS

A SOFTWARE IMPLEMENTATION OF AN
INTERACTIVE GRAPHICS SYSTEM FOR THREE DIMENSIONAL
MODELING AND LAYOUT

by

Surasak Mungsing

March 1986

Michael J. Zvda

\
AR
Approved for public release; distribution is unlimited e

b

=

& -
wd Thesis Advisor:)
=

(Wre

=

[—

r'-‘ AL i Mt 40t e Rioni A RURA A A L LR At A hd it bt Bt (e G AL D AN e g N A A Aa P Aa iginon e 0n ey s et A

e Y -
ECURTTY CLASSTICATION OF Y= PA /:79'/)/65/6
REPORT DOCUMENTATION PAGE
| e ————————
'a REPORT SECURITY CLASSIFICATION b RESTRICTIVE MARKINGS
R M
24 SECUR!TY CLASSIFICATION AUTHORITY 3 OISTRIBUTION/AVAILABILITY OF REPORY
J 75 0eC A FICATION T GOWNGRADING SCHEDULE Arfproved for public release; distribution
is unlimited
4 PERFORMING QRGANIZATION REPORT NUMBER(S) § MONITORING ORGANIZATION REPORT NUMBER(S)
6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 73 NAME OF MONITORING ORGANIZATION
(if applicadle)
Naval Postgraduate School Code 52 Naval Postgraduate School
6¢ ADDRESS (City. State, and Z2iP Code) b ADORESS (City, State, and Z2IP Code)
Monterey, CA 93943-5000 Monterey, CA 913943-5000
8a NAME OF FUNDING s SPONSORING 8b OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT (OENTIFICATION NUMBER
ORGANIZATION (If applicable)
3¢ ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROECT Task WORK JNIT
ELEMENT NO NO NO ACCESS'ON NO

VYT TLE (include Secunty Classification) i
A SOFTWARE IMPLEMENTATION OF AN INTERACTIVE GRAPHICS SYSTEM FOR THREE DIMENSION&“.«ODHLING

AND LAYOUT
TS OPERSONAL AUTHOR(S)
Munegsinge, Surasak

"33 TYSs OF REPORT 135 T'"ME COVERED 14 DATE OF REPORT (Year. Month, Day) ['S PAGE COUNT
Saster's Thesis O e 10 11086 Mapch 52

‘6 SLFLEAVENTARY NOTATION

COSATI CODES 18 SUBJECT TERMS (Continue on reverse f necessary and identify by block number)

GROuP SUB-GROUP INTERACTIVE, GRAPHICS, THREE DIMENSIONAL, LAYOUT, MODELING,
WALKTHROUGH, PIPING, MENU

"
m
pd

(V]

'3 23STRA(CT [Continue on reverse if necessary and dentify by block number)
This thesis examines interactive techniques for viewing a 3-D building model in a walk-

through fashion and for placing 3-D piping into a 3-D building model. The focus of re-
search is software implementation using the C programming language and the IRIS Graphics
Library on the Silicon Graphics Inc. IRIS Turbo 2400 interactive graphics svstem. The
first part of the research is concerned with drawing, viewing a 3-D building model, and
examining interactive techniques required for building walkthrough mechanism. The second
part is concerned with the development of techniques necessaryv to allow the placement of
3-D piping into a 3-D building model using 2-D graphics display and a mouse device. The
alzorithms and implementation of these techniques are presented.

JY 03T 3T ONAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
% ~coassEeoUuNeMITED O SAME AS RPT DOonc users | unclassified G
JJa NAME OF RESPONSIBLE NDWVIDUAL 22b TELEPHONE (Include Area Code) | 22¢ OFFICE S*MBOL X .
Prof Michael Zvda 408 646-2305 527k e
DD FORM 1473, 38 AR 83 APR egition may be used until exhausted SECURITY CLASSEICATIIN OF mi§ DACE A

*s’e
D

All other edit.ons are obsolete

Approved by :

Approved for public release, distribution is unlimited.

A Software Implementation of an Interactive Graphics System

for Three Dimensional Modeling and Layout
by

Surasak Mungsing
Flight Licutenant, Royal Thai Air Force
B.S.E.. University of South Florida, 1975
M.Eng., Chulalongkorn University, Thailand.1984

Submitted in partial fulfillinent of the

requirements for the degree of
MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POST GRADUATE SCHOOL
March 1986

Author: i : ((/‘- -f

C &
Qurdsak Mugfsing

Vv mcont \ XKChamuan.

Department of Computer Science

Kneale T. Marsha

Dean of Information and Policy Scienc

T s-_‘l

..

o SRR S B bl e A G e & ue S e cn e o . - - ‘ - g e I
5

o
| X
|

ABSTRACT o

-

i

This thesis examines interactive techniques for viewing a 3-D building model)

-

* in a walkthrough fashion and for placing 3-D piping into a 3-D building model. '$:
The focus of research is software implementation using the C programming ,'é?

. language and the IRIS Graphics Library on the Silicon Graphics Inc. IRIS Turbo Oy

2400 interactive graphics system. The first part of the research is concerned with)

drawing. viewing a 3-D building model. and examining interactive techniques /:,'
required for building walkthrough mechanism. The second part is concerned with _'."
the development of techniques necessary to allow the placement of 3-D piping :2::')-
into a 3-D building model using 2-D graphics display and a mouse device. The —
algorithms and implementation of these techniques are presented. ~
‘. .'

o

'-,’-0

o

‘_‘-.o."!

o

Accesion For c‘h{
| AW

NTIS CRA&I ﬁ N

DTIC TAB 0 RS
Unannounced D X

Justification | '

BY o] o

Distributior. | e

+.5,

Availabitity Codes o

e ardio] s

Dist Special el

, | NN

e

N

e

i

.‘-:.'v

o

3 e

O

s
o

.................. .
. - A - - L A . - . . o S P . - - .

T T e e T A T e

WA PR SN SR TR R

2T

L0 {v‘.. v, "- .’l

R
Lt

s

TABLE OF CONTENTS

I INTRODUCTION .ooooeioeeeeeeeeeseceeeessisssesesessasssesmsesessssssasssessaessasssnens 5
A DISCUSSION oooooooeoeoeoeoe oo 5
B. THESIS OBJECTIVE eovoeeeeeveeeeeeeeeeereetseeseeesseeeeeesesesssssasenens 6
C. THESIS CONTENTS ooeoeeeeeeeeeeeseeerseeeeeessesrseeessesssesssseess s 7 i
II. RESEARCH RESOURCES ...oouoooeeeeeeeeeeeeeeeeeees e seesvss s eesessnsenne 10
A. COMPUTER SYSTEM ..ooiveoeeeeeeeeeeeseseesees e eestsssssseseessssnnns 10
B. IRIS GRAPHICS LIBRARY ..oovoriveeeieeeeeeeeeeeeeseeesnseeseeseressessone 11 ‘
C. MENU PACKAGE ..ot ee e sees e sees s 11
III. BUILDING WALKTHROUGH ALGORITHMcoooovmvnireiiene. 16
A. BUILDING WALKTHROUGH MECHANISMcccovvverirrerennnnne. 16
B. BUILDING WALKTHROUGH ALGORITHMccceovvvirereennne. 17 ‘
IV. PIPING LAYOUT ALGORITHM ...oooivoiomomeeriereeereeeeeeeseeeesseseesnnon. 33 "
A. THREE DIMENSIONAL PIPING LAYOUT TECHNIQUE 33
B. THREE DIMENSIONAL PIPING LAYOUT ALGORITHM 34
V. PROGRAM IMPLEMENTATION DETAILS ..oocooovviveeeecreerenn. a1
VI. CONCLUSIONS AND RECOMMENDATIONS ...cvvmvmerrreeeeeenne 48 ;
A. CONCLUSIONS ooooeeeereeseeeseeeseseeesesseesessese e seese s seeeseee e 18 .
B. LIMITATIONS AND RECOMMENDATIONSovoovireveeeennns 18 j
BIBLIOGRAPHY .ot eee e eeeeees s eeee s enees e s eenene 50

INITIAL DISTRIBUTION LIST

+

Ry

X

' :
I INTRODUCTION =

- o~

A. DISCUSSION 2

Physical models have been used in many layout design applications. A layout X

' design is an arrangement or plan for assembly and/or installation of objects from ..‘,
models. The purpose behind layout design is to reduce or to eliminate problems =

1 and difficulties that may be encountered during the construction phase. In the bt
; aircraft industry, mock-ups (models of actual size) of complete airplane exteriors }E
and interiors are required for the layout design of hydraulic/pneumatic piping, ;:’_

electrical wiring, control cabling, electronic/avionic equipment installation, etc. In -

building and factory piping/wiring layout design. scale models are used. The o

layout design process can involve many changes, requiring modifications of the ;»

design and. perhaps, modifications of the mock-ups and scale models. However, ""

reproducing and modifying the design, mock-ups. or scale models is expensive and 5

time consuming. -;:f

An interactive graphics display system is an alternative approach for the :::ﬁ

layout design task. It provides a fast and interactive method for the creation and

. modification of a layout design. In interactive graphics, an object is composed of -

a collection of graphics primitives such as three-dimensional lines, points, and

polygons. The organization of these primitives defines a representation for a ;';

particular object. The image of an object can be created from its mathematical ;

representation and displayed upon a graphics screen. The mapping process can A
involve a tremendous number of calculations. With today's VLSI technology, the

calculations can be performed in hardware and in a pipeline fashion to provide

L I '-'

instantaneous results.

A view of a three-dimensional object can be created by the viewing process
shown in Figure 1.1. The process transforms a 3-D object into a 2-D projection
plane. Conceptually, an object in 3-D world space is clipped against the 3-D view -
volume, projected onto a 2-D projection plane and finally scaled into a display ;
device's coordinate system. The display can be interactively changed by ‘

modifying the position and orientation of objects by means of a set of interactive -

T
N

input devices. Typical devices include keyboards, buttons, valuators (dials), and

Xy position indicators or locators. e
-
[»~

\..

5 \':

v N

b c

i >
]

R AT R R A U A N . et e et et aea e o aLe - A
Et.L LSV WAL B4 S ALY LR AT Yy \"' PN a ';'i;";";' ‘s 'J.‘:A.’;’.'.i'.i',::-'.ii'.c:'.(,} .i:' > .':'f:'.':'.’:'-‘:'-‘:‘:'...n':' A

g™ e "

’ Ll

OO g o

¥

FAEE Y

It is possible to interact with a 3-D layout design on a 2-D graphics display.
The visual display of a layout model can be put on a screen by the process shown
in Figure 1.2. The output pathway starts with an applications program, a piece
of software that maintains the mathematical representation of a model, making
calls to the graphics package. The graphics package transforms the data passed
to it and passes the transformed data to the device driver. The device driver
converts the data received into the opcode streams required by a piece of
hardware called the display processing unit (DPU). The DPU then converts the
opcode streams into a form that can be used by the refresh system that maintains
the display on a cathode-ray tube (CRT).

Control values from the interactive devices are passed to the applications
program along the input pathway. These input values are used to make a change
in the picture from the application program. The new picture is sent to the screen
via the output pathway described above. Typical interactive inputs are dragging
and picking. Dragging is a technique for dynamically moving an object around
with a locator. This technique includes dynamic scaling and rotation of objects to
a desired size and orientation. Picking is a technique that allows the designer to
pick an object or collection of objects to be operated upon. However, the
operations which concern "getting the picture there" (from the applications
program to the display surface) and "manipulating the picture" (by way of some
movement of the interactive devices such that a picture change is generated)
involve intensive mathematical description encoding and matrix transformation
calculations. Only workstations with these capabilities in hardware can handle

these operations at a satisfactory level of performance.

B. THESIS OBJECTIVE

The objective of this study is to examine and develop interactive techniques
for viewing a 3-D building model in a "walkthrough" fashion and for placing 3-D
piping into the 3-D building. A high performance graphics workstation is
required as a research tool for this effort as it can provide the human user
immediate feedback of visual information in response to any physical control
manipulations made. In general, any workstation with leading edge capabilities is
suitable for this research. The Silicon Graphics Inc. IRIS Turbo 2400 system has
been chosen for this effort as it is available for use in the Graphics and Video

Laboratory of the Naval Postgraduate School.

T e Tt TR Tt e Fa e ta .ttt T T B S
L3P T AT i T I P N Y R S Y °
. o« AP - m e ettt

ryl

¢!
2"’

[

. .

et AN

Y -

o g o M

“n.

vy

.
s

y T WYy

B
. B
[}

4% 4

s

RO IA

§ The focus of this research is a software implementation using the C 5.
; programming language and the IRIS Graphics Library. The first part of the I\
research work concerns drawing, viewing a 3-D building model, and examining the 3‘
interactive techniques required for building "walkthrough". The second part N
concerns examining interactive techniques necessary to allow the placement of 3-D
piping into a 3-D building using a 2-D graphics display and a mouse device.

" w a’

\ C. THESIS CONTENTS S
9 The remainder of this study is devoted to the presentation of the IRIS 2400 0
system. the development of supporting algorithms and the implementation for a t
building modeling and a 3-D piping layout design. Chapter 2 introduces the IRIS -
y workstation architecture, its significant features, the IRIS graphics library, and
A the Gaddis menu system. Chapter 3 describes the building walkthrough and y
o walkthrough movement algorithms. Chapter 4 describes the 3-D piping layout :f"
o A
algorithm. Chapter 5 describes the program implementation details. Chapter 6 ¢
presents the conclusions of the research work. -
. ‘
-
N .
(
<
"~
' “~
; 0
' .e
: =

TR

~

L derd. B af At B B

:

-ssoooaq Butmalp (-¢ 2Y3 Jo Topoj T[enadeduoy (- SuInIry

Ipao 298UTPJIOOD
- SoamHIPIOLY seanuTho” susyd ®
@D T ADP .Hdu.mmh-.—ﬂ jl adTAep pazIemIou EOM\UUNMOQQ ‘Jl WNTOA MATA]Ill
o3Ul WIOJBUBIY 03Ul WIOFSUBIY ojuo 3vaload 3suteSe dryo | ssarqramrad
H ; andano
238BUTPJIOCOD
PIIoa (-£
se3suproO 8238UTPIOOD

8D TAIpP paZT[BWIOCU praom paddiro

SN K J . L) P . af N Ll . et
A e 1” Ny p sl .q.. R--. AERCAERRAS ...- g R AN ...-... Ry ¥f....... y.-. u.-.n\-r e 9 ‘.-......-.....-.\.\.\-_...

‘oanqotg @Yys Burqae[ndiuey puw Buife[dsiq jo ss9v0dd Z°'1 aandt g

femyzsq andujy e

Aemyqed andanp alffpee— e

83D1A3Qg o .
@AT3OwVIdjUY sanyTevyp sanye,p B8aNTBA ...

° ney nay ney

! ')

| [1 1 .

“ (@awmj 308 H “ '

‘ ' 124377 mor) ' (aaem3yog)] (s18m3jog) S

v .n\

| .ﬁ!) bi r ..!‘

T JaAtTa(qg - a8uwyouy " meaBoayg”.

Awv1de1qg | ndq . aotAaqQ _ sotydea) suotqeo>11ddy uu

m8aaqg vy8(puse a11®d o
spoodg sapoodg autjnoaqng o)

FRERBAIIN - JNIUERIY NPCRI

bl S e S g gl § Dt ar b A Al - & . e sl ont e ag !l.!v!_'.! _I-.,_,_I~:_-". i ot :-_F‘ o i gs g i ik i it Bt et J Sk gt Rt Bt i A g

2y % % j-

-
LA

-
¥]
o &

II. RESEARCH RESOURCES

>y

A. COMPUTER SYSTEM
The IRIS Turbo 2400 workstation was chosen as th. research tool for this N

thesis because it is an engineering workstation with powerful general purpose

o ." -

computing and fast response graphics. and is already available at the Naval
Postgraduate School's Graphics and Video Laboratory. The system was designed

.A'.
Se by ‘v v

by Silicon Graphics Inc. to combine real-time three-dimensional color graphics
with the Unix operating system and Ethernet communication. It
incorporates custom VLSI chips in the design to improve speed and reliability.
Figure 2.1 shows the IRIS Turbo 2400 systemn and its significant features. o
Conceptually. the system is made up of three pipelined components: the v
central processing system. the Geometry Pipeline, and the raster subsystem. K
These three systems communicate over a high-speed private bus. Disk and
network communication occurs over the system Multibus. Figure 2.2 shows the e
block diagram of the IRIS Turbo 2400 architecture. -
The central processing unit (CPU) is a Motolora 68020 microprocessor o
running at 10 MHz. It manages display lists. runs the application program, and se
controls the Geometry Engine (GE) and raster subsystem.
The Geometry Engine (Figure 2.3) is a custom VLSI processor designed for
real-time 3-D graphics. It consists of four 32 bit-floating point ALU's and a "
microcode control store. The first four engines perform 4-by-4 matrix
transformations such as rotation. translation. and scaling. The next four to six ok
engines clip the object in 2 or 3 dimensions. The last two engines perform a :‘-'.'l
perspective division and map the 3-D coordinates to screen space. o
The raster subsystem (which consists of three primary components: the frame
buffer controller, the update controller. and the display controller) receives the
coordinates transformed and clipped by the Geometry Pipeline. It updates the
image memory by filling in pixels corresponding to these coordinates, and
refreshes the display.

10

B. IRIS GRAPHICS LIBRARY

Ev&.vf.tv:\ﬂ'prawn"ﬂ TRATFWCF
Y The IRIS Graphics Library is a software package that provides high- and low-

level support for graphics on the IRIS Workstation. It is the general display

processing system that allows an applications programmer to describe and

manipulate objects in world coordinate space.
The IRIS Graphics Library consists of graphics and utilities commands.

There are eight categories of these commands in the library:

1. Coordinate transformation commands that manipulate a stack of transformation matrices.
These commands map a user-defined world coordinate system onto the screen.

2. Primitive drawing commands that draw points, lines. polygons, circles, arcs, curves, and text
strings on the screen.

3. Object creation and editing commands that build complicated shapes from simple ones. The
newly defined objects can be replicated or modified as desired.

4. Display mode and color map commands that affect the way the TRIS uses its bitplane
memory and determine the color used to draw shapes on the screen.

5. Line style, texture, cursor, and font commands that select characteristics for drawing lines.
- filling polygons. and writing text strings.

6. Input commands that initialize and read input devices that allow the user to poll a device
directly or read entries from the event queue.

7. Picking and selecting commands that allow the user to identify the objects that are visible in
a given area of the screen.

8. Geometric computing commands that provide access to the computing capabilities of the
graphics hardware.

The use of these commands is described in the IRIS User’s Guide.

C. MENU PACKAGE
The graphics programs for this study utilize a menu package, designed by
Capt. Michael E. Gaddis. USMC. This menu package allows the programmer to
specify and use numerous individualized menus for selection of program branches.
The package is v v simple to use. It is self contained, in that all procedures

are ready to run. except for the initialization procedure. The user describes all

11

T T AT T T N T e e e et e e
R S AN S N Y e e T . et
hnsian ot dadats Lo 2o Lo g s s at o :(-f:f:‘i‘. \‘:". ek

h
.
2
-!
"
<
S
L
N
.o
'.
.
.
S

.’ . ! . - '.l -'I
LRI - T B W |

T Y

" e e e o o

the menus to be used in the program in the initialization procedure. Each a menu
has menu number, menu name, number of options, and option names associated
with it. The program calls this procedure for menu installation and calls another
procedure in the menu package, with specified menu number and screen
coordinates (location of the menu) as parameters, for display.

The menu selection mechanism is made through a three-button mouse. The
left and right buttons are used for scrolling up and down the menu. The scrolling
highlights an option. The middle button activates the highlighted option and
causes the program to branch to a procedure specified by that option.

12

o 7 8

TeTe .
[

X4

. -
DRI

KRR

v

......
NN

S

‘,‘\??’ '

Ethernet between IRISes and VAXes |

A

N ;

A

. — Display monitor ‘

:

.’ Disk drive S — :.ybo.rd :.

- L= mouse -

.. = d interface -

Keyboard Mouse p

) 5

. IRIS Turbo 2400 Graphics Workstation: .

Q » 32 bit Motorola 88020 Procesesor %
« 2 MP CPU Meaory

. » 1024x768x32 bit dieplay memory <

i « Floating Point Accelerator :

L « 144 MB Diek Storage ;

s Cartridge Tape Unit i

- = Geometry Pipeline with Geometry Egines and Geometry Accelerators :

; + @80Hs Non-Interlaced Display ;

i + Hardware Smooth Shading K

e Unix System V A

E » IRIS Graphice Library :

: = Ethernet to VAXes :;

) o 16 bit Z-Buffer for Hidden Surface Elimination

« Digitiser Tablet =

S e Window Manager with a high-level user interface and overlapping o

i windows for output of both text and interactive 3-D grephice ﬁ

; :

A

Figure 2.1 IRIS 2400 System and Its Features.

13

.
e
X
‘-
.

L
* .
-
.0
-

to network

Ethernet

controller

MULTIBUS

Diek

controller

FPrame
88020 buffer
controller
processor
-4 Geometry
engines

To
keyboard
and
RS-232 Program
display
list
memory

Update

controller

PRIVATE BUS

Figure 2.2

up to
15.5 Mbyte

Floating
point

Accelerator

MULTIBUS

RGB to

monitor
-
Display Color
controllery map s

up to

33

Image Bit
memory Planes

Block Diagram of the IRIS Turbo 2400 System.

N

[A)

NI

User
coordinates

Gecmetry Engine

Geometry Accelerator

Matrix multipliers

Optional clippers

Far Near

Clippers

Scalers

Physical screen
coordinates

Figure 2.3 Geometry pipeline.

15

[e S o

- T v ee

]

., 8 Y, A

IR

- -, -
A

e v v e -

| W) h T s PN

- o o o
,° .

PP S

"4 “‘....'.’.-' -

e s e s SRR o

ph sy, AP

P,

CArE A

(1
&

]
>,

[!

#

R

. ‘l_.o

AAAN e

13

L A

@ e

Tal Tt WS P W WESTI TN

Il BUILDING WALKTHROUGH ALGORITHM

A. BUILDING WALKTHROUGH MECHANISM

The mechanism for building walkthrough is very useful in piping layout
design. Such a mechanism allows the designer to look at a particular piping
systems within the building model. from different angles and positions, to
investigate whether there are any volumetric interferences within the piping
system. among other piping system. with the building structures, and with any
objects within the building.

In interactive computer graphics. the visual effect of building walkthrough
can be simulated by manipulating the picture on the screen through an
interactive input device. To simulate building walkthrough the coordinates of a
building model are clipped against a specified view volume, perspectively
projected onto a projection plane whose normal is parallel to the line of sight
defined by a viewpoint and a reference point in the world coordinate space, and
finally mapped onto the screen coordinates. The perspective projection is used to
provide a degree of realism since it creates an effect similar to that of the human
visual system. A mouse is used as an interactive input device to change the
coordinates of the viewpoint and the reference point. The change in coordinates
of these points causes a change in the picture on the screen.

The walkthrough visual effect produced by interactive computer graphics is
analogous to the image produced by a remotely controlled camera that moves in
3-D space. The viewpoint is where the camera is and the line of sight is in the
direction that the camera is facing. Turning movement in such a system only
requires changes in the line of sight (i.e. the coordinates ¢* the reference point).
Moving toward or away from an object. and circling around an object only
require changes in the position of the viewpoint and perhaps changes in the
nosition of the reference point. For such movement. the line of sight is
maintained. The walkthrough mechanism can be effectively controlled by a
three-button mouse device. With three buttons, a mouse can produce up to eight
inputs. Seven of these are used for controlling the move-forward, move-backward,
turn-left, turn-right, turn-up. turn-down, and circle-around movements. Pressing
a button or a combination of buttons produces an input to modify the coordinates

of the viewpoint and the line of sight and affects the picture on the screen. The

16

hiaahaat LM SR R aea o

continuous modification of the viewpoint and the line of sight, that produces the
walkthrough visual effect on the screen, is achieved by holding down a button or a
combination of buttons. Leaving all three buttons unpressed produces the input

that has no effect to the picture on the screen.

B. BUILDING WALKTHROUGH ALGORITHM
The building walkthrough algorithm used in this study is composed of the
following outlined steps:

1. Type of movement determination: Designate a combination for mouse buttons to each
type of walkthrough movement.

2. Determination of sets of viewpoint-reference point relative positions: For each
type of movement, compare coordinates of the reference point to those of the viewpoint to
determine their relative position in the world coordinate system. Define sets of viewpoint-
reference point relative positions such that the coordinates of the viewpoint and the reference
point can be modified by a set of coordinate modification functions.

3. Formulation of coordinate modification functions: Formulate a set of coordinate
modification functions used on the coordinates of the viewpoint and the reference point
according to the type of movement determined from step 1 and the set of viewpoint-reference
point relative positions determined from step 2.

The building walkthrough algorithm developed from the above outlined steps

and used in this study is shown in Figures 3.1 - 3.8 .

17

| QR

R: o g Tl W g

XANAL ARy

"‘ © r '.
e
s s fe s '

o

v"v" ". -" .

N

o r

T

. LA SRl AR gt g e SN g S S e g S A e B - ey L v .

Begin walkthrough algorithm

create objects

initialize the viewpoint and the reference point

specify the display viewport

specify the perspective viewing pyramid

specify point and direction of view with the initial viewpoint and reference point
clear the viewport

display the objects in the viewport

while(TRUE)
begin
/* test for the type of movement and branch to the
appropriate movement algorithm to modify the coordinates
of the viewpoint and the reference point */

if all three buttons are hit then
branch to the circle-around algorithm

else if the left button and the right button are hit then
branch to the move-backward algorithm

else if the middle button and the left button are hit then
branch to the turn-down algorithm

else if the middle button and the right button are hit then
branch to the turn-up algorithm

else if the left button is hit then
branch to the turn-left algorithm

else if the right button is hit then
branch to the turn-right algorithm

else if the middle button is hit then
branch to the move-forward algorithm

clear the viewport
specify point and direction of view with new viewpoint and reference point
display the objects in the viewport

end

End walkthrough algorithm

Figure 3.1 Building Walkthrough Algorithm.

18

Syl

v o .
1%

-« v 5 &
PR g’ L

e |

s
0

. .
L] .n .
Lt

J'-

.i

.

ANy
)

#

v.' .' \ %
f

"lvl'!f‘l" r "o

-~y
PAA

{

~ '0*’"

2,

vy

-
R

S AEE DU N AR S i it S Pl ¢ JA A Ao 2 A
+
Ly
—y
»,
]
Begin circle-around algorithm :.
pi=3.1415927 /* constant */ =
theta=pi/180. /* turning angle of 1 degree */ .
L]
/* let'Vx,Vy,Vz and Rx,Ry,Rz be the coordinates of
the viewpoint and the reference point respectively. 1\
W
LY
d is the distance between the viewpoint and the
reference point. .
phi2 is the angle between the line of sight and the 5
xy-plane. fr
phi is the angle between the projected line of sight
on xz-plane and the x-axis. */
/* calculate the values of d, phi2, and phi */ N
d = sqrt{ (Vx-Rx)(Vx-Rx) + (Vy-Ry){Vy-Ry) + (Vz-Rz}(Vz-Rz} } w
phi2 = arcsin{ | Vy-Ry|/d } o
phi = arcsin{ ' Vz-Rz /(d cos(phi2)) }
/* first case of viewpoint-reference point relative position */ “
if Rx<=Vx and Rz<Vz then
'* check if the line of sight is still in the case boundary */ f::-
if phi>=theta then -
Vx = Rx + d cos{phi2) cos(phi-theta)
Vz = Rz + d cos(phi2) sin{phi-theta) N
* the line of sight crosses the boundary into the second case */ .
else .
Vx = Rx + d cos(phi2) cos(theta-phi) -
Vz = Rz - d cos(phi2) sin(theta-phi) ~
: /* second case of viewpoint-reference point relative position */ ::
else if Rx<Vx and Rz>=Vz then -
it
/* check if the line of sight is still in the case boundary *, o
if (phi~theta) <= {pi/2.) then !
Vx = Rx -~ d cos(phi2) cos(phi+theta)
Vz = Rz - d cos(phi2) sin(phi~theta) .
/* the line of sight crosses the boundary into the third case */
else 5
Vx = Rx - d cos(phi2) sin{theta-pi/2.~phi) "
Vz = Rz - d cos{phi2) cos(theta-pi/2.+phi) .
N
~
A
-
Figure 3.2 Circle-around Algorithm. ‘\
19 .
>

DR B T S s PO . -
° * ! - L SRR SR Sl A
-t

R S - ST - Ly et
P AL AT T ACAS I AR I AR O S S AN S S

A

4
.

/* third case of viewpoint-reference point relative position */
else if Rx>=Vx and Rz>Vz then

/* check if the line of sight is stil} in the case boundary */
if phi>=theta then
Vx = Rx - d cos(phi2) cos(phi-theta)
Vz = Rz - d cos(phi2) sin(phi-theta)
/* the line of sight crosses the boundary into the fourth case */
else
Vx = Rx - d cos{phi2) cos(theta-phi)
Vz = Rz - d cos(phi2) sin{theta-phi)

/* fourth (last) case of viewpoint-reference point relative position */
else

7* check if the line of sight is still in the case boundary */
if {phi+theta) <= (pi/2.) then
Vx = Rx - d cos(phi2) cos(phi+theta)
Vz = Rz - d cos{phi2) sin(phi+theta)
/* the line of sight crosses the boundary into the first case */
else
Vx = Rx + d cos{phi2) sin(theta -pi/2.-phi)
Vz = Rz - d cos{phi2) cos{theta-pi/2.+phi)

End circle-around algorithm

Figure 3.2 Circle-around Algorithm (continue).

20

.n

® 4" ata gt BT G TR PRSI . et e Me e, . taltl . R CP N A e e . BT,
e R N N e Sy Ny T s e

;; 0
_:l
~
L)
b
L n
; Begin move-backward algorithm
2
pi = 3.1415927 /* constant */ -
mrate = 0.5 /* moverate of 50 centimeters */ .
D ﬂ.
X /* Vx,Vy,Vz are viewpoint coordinates. ;
Rx,Ry,Rz are reference point coordinates. .
d is the distance between the viewpoint and the reference point. v
phi2 is the angle between the line of sight and the xz-plane. -
! phi is the angle between the projected line of sight on the xz-plane =4
and the x-axis. */ -
/* calculate the values of d, phi2, and phi */
d = sqrt{ (Vx-Rx)(Vx-Rx) + (Vy-Ry}(Vy-Ry} (Vz-Rz)(Vz-Rz) }
phi2 = arcsin(| Vy-Ry{/d }

X phi = arcsin{ | Vz-Rz| /(d cos(phi2)) } -
4 K4
:' /* check for the first case of viewpoint-reference point relative :-
: position and calculate the new x and z coordinates of the i

viewpoint and the reference point. */ e
if Rx<=Vx and Rz<Vz then
Vz = Vz + mrate cos(phi2) sin(phi)
Vx = Vx + mrate cos{phi2) cos(phi) =
Rz = Rz + mrate cos(phi2) sin(phi) e
Rx = Rx + mrate cos(phi2) cos(phi) “
/* check whether the viewpoint is above or below the reference point -
’ and calculate the new y coordinates of the viewpoint and the : -
reference point */ -
if Ry<Vy then .‘;
Ry = Ry - mrate sin{phi2) ¢
Vy = Vy - mrate sin{phi2) e
else
Ry = Ry + mrate sin(phi2) -
Vy = Vy + mrate sin(phi2) b
/* check for the second case of viewpoint-reference point relative o
position and calculate the new x and z coordinates of the -
viewpoint and the reference point. */
else if Rx<Vx and Rz>=V3z then o
Vz = Vz - mrate cos(phi2) sin{phi))
Vx = Vx + mrate cos(phi2) cos(phi) o
Rz = Rz - mrate cos(phi2) sin(phi) I~
Rx = Rx + mrate cos(phi2) cos(phi) .]
e
Figure 3.3 Move-backward Algorithm. w
P
21 5
A VO EATE B CHENL S DR BRER O O Ct R DR R S RSt G O S, Dt R L G A LR R P G R O SO

L R4
PR
e Y

VLR [of

LN

L%

!
o
"

/* check whether the viewpoint is above or below the reference point
and calculate the new y coordinates of the viewpoint and the
reference point */

if Ry<Vy then
Ry = Ry - mrate sin(phi2)

- Vy = Vy - mrate sin{phi2)
else
Ry
Vy

Ry -~ mrate sin(phi2)
Vy + mrate sin(phi2)

il

il

/* check for the third case of viewpoint-reference point relative
position and calculate the new x and z coordinates of the
viewpoint and the reference point. */

else if Rx>=Vx and Rz>Vz then
Vz = Vz - mrate cos(phi2) sin(phi)

Vx = Vx - mrate cos(phi2) cos(phi)
Rz = Rz - mrate cos(phi2) sin(phi)
Rx = Rx - mrate cos{phi2) cos(phi)

/* check whether the viewpoint is above or below the reference point
and calculate the new y coordinates of the viewpoint and the
reference point */

if Ry<Vy then

Ry = Ry - mrate sin(phi2)

Vy = Vy - mrate sin(phi2)
else

Ry = Ry ~ mrate sin(phi2)

Vy = Vy + mrate sin{phi2)

/* check for the fourth case of viewpoint-reference point relative
position and calculate the new x and z coordinates of the
viewpoint and the reference point. */

else
Vz = Vz + mrate cos(phi2) sin(phi)

Vx = Vx - mrate cos(phi2) cos(phi)
Rz = Rz + mrate cos{phi2) sin(phi)
Rx = Rx - mrate cos(phi2) cos(phi)

/* check whether the viewpoint is above or below the reference point
and calculate the new y coordinates of the viewpoint and the
reference point */

if Ry<Vy then

Ry = Ry - mrate sin(phi2)

Vy = Vy - mrate sin(phi2)
else

Ry = Ry ~ mrate sin(phi2)

Vy = Vy ~ mrate sin{phi2)

End move-backward algorithm

22

Figure 3.3 Move-backward Algorithm (continue).

LN L

e 8 0 0 4 v

R R AR

{ Begin turn-down algorithm

pi = 3.1415927 /* constant */
theta = pi/180. /* turning angle of 1 degree */

/* Vx.Vy.Vz are the coordinates of the viewpoint.
Rx,Ry,Rz are the coordinates of the reference point.
d is the distance between the viewpoint and the reference point.
phi2 is the angle between the line of sight and the yz-plane.
phi is the angle between the projected line of sight on the yz-plane
and the z-axis. */

-* calculate the values of d, phi2, and phi */

= sqrt{ {Vx-Rx)(Vx-Rx) = (Vy-Ry)(Vy-Ry) + (Vz-Rz)+(Vz-Rz) }
phi2 = arcsin {, Vx-Rx;/d)
phi = arcsin{ - Vy-Ry; /(d cos(phi2)) }

. * first case of viewpoint-reference point relative position */
if Rz<=Vz and Ry>Vy then

,* check if the line of sight is still in the case boundary */
if (phi>=theta then
"* calculate the new y and z coordinates of the reference point */
Rz = Vz - d cos(phi2) cos(phi-theta)
Ry = Vy - d cos(phi2) sin{phi-theta)
* the line o sight crosses the boundary into the second case
else
* calculate the new y and z coordinates of the reference point *,
Rz = Vz - d cos(phi2) cos(theta-phi)
Ry = Vy - d cos(phi2) sin(theta-phi)

*/
'

* second case of viewpoint-reference point relative position *

else if Rz<Vz and Ry<=Vy then

/

* check if the line of sight is still in the case boundary */
if {pi;/2.-phi) >= theta then
* calculate the new y and z coordinates of the reference point *,
Rz = Vz - d cos(phi2) cos(phi+theta)
Ry = Vy - d cos(phi2) sin(phi+theta)
* the line o sight crosses the boundary into the third case */
else
/* calculate the new y and z coordinates of the reference point *.
Rz = Vz + d cos(phi2) sin(theta-pi, 2.~ phi)
Ry = Vy - d cos(phi2) cos(theta-pi; 2.~ phi)

Figure 3.4 Turn-down Algorithm.

23

Ce
? A

»

Y wY
..

> ARAN

v
o e
L)

f’{ "

m].'l.;‘

‘l. 'v' '.-"l.."'-'l(‘l i

~ e
.
Y

s
N

’
l" :. L] "
L)

r

A

Lg

.,".“4"‘
b e

,

e

......
ey

w,

U g g
1)

h"

SN

'* third case of viewpoint-reference point relative position */

else if Rz>=Vz and Ry<Vy then
"* check if the line of sight is still in the case boundary */
if phi >= theta then
* calculate the new v and z coordinates of the reference point */
Rz = Vz + d cos(phi2) cos(phi-theta)
Ry = Vy - d cos{phi2) sin{phi-theta)
_* the line o sight crosses the boundary into the fourth case */
else
* calculate the new y and z coordinates of the reference point */
Rz = Vz ~ d cos(phi2) cos(theta-phi)
Ry = Vy - d cos(phi2) sin{theta-phi}

* fourth (last) case of viewpoint-reference point relative position */
else
* check if the line of sight is still in the case boundary *
if (pi ‘2.-phi} >~ theta then
* calculate the new y and z coordinates of the reference point */
Rz = Vz - d cos{phi2) cos(phi+theta)
Ry = Vy - d cos[phi2) sin{phi-theta)
* the line o sight crosses the boundary into the first case *;
else
* calculate the new y and z coordinates of the reference point */
Rz = Vz - d cos{phi2)} sin(theta-pi 2. ~phi)
Ry = Vy - d cos(phi2) cos(theta-pi 2.~ phi)

End turn-down algorithm

Figure 3.4 Turn-down Algorithm (continue).

24

e LA AR

R

_l.'u' " e

-
.

RARTRPALLL <

-".‘,r‘,l

L
L

.
R

CAPRABLY

LR A
ofele .

’lf.r T

«a

"o
~
- .'
.. hd

™ 'lp

Pl Rty g piy nt, 9, Sak A i, R SaL K Sk tod (b A A SRS E A S kA M e St At i S

Begin turn-up algorithm

pi = 3.1415927 /* constant */
theta = pi/180. /* turning angle of 1 degree *;

"* Vx.Vy, Vz are viewpoint coordinates.
Rx.Ry,Rz are reference point coordinates.
d is the distance between the viewpoint and the reference point */
phi2 is the angle between the line of sight and the yz-plane */
phi is the angle between the projected line of sight on the yz-plane
and the z-axis. */

‘* calculate the values of d, phi2, phi */

d = sqrt{ {Vx-Rx)(Vx-Rx) + (Vy-Ry)(Vy-Ry) + (Vz-Rz)~(Vz-Rz) }
phi2 = arcsin { Vx-Rx|/d)

phi = arcsin{ | Vy-Ry' /(d cos(phi2)) }

"* first case of viewpoint-reference point relative position */
if Rz<Vz and Ry>=Vy then

* check if the line of sight is still in the case boundary */
if (pi/2.-phi) >= theta then
* calculate the new y and z coordinates of the reference point */
Rz = Vz - d cos(phi2) cos(phi~theta)
Ry = Vy - d cos(phi2) sin(phi+theta)
* the line of sight crosses the boundary into the second case */
else
* calculate the new y and z coordinates of the reference point */
Rz = Vz ~ d cos(phi2) sin(theta-pi/2.~ phi)
Ry = Vy = d cos(phi2) cos(theta-pi/2. - phi)
'* second case of viewpoint-reference point relative position *;
else if Rz>=Vz and Ry>Vy then

* check if the line of sight is still in the case boundary */
if phi >= theta then
'* calculate the new y and z coordinates of the reference point */
Rz = Vz + d cos{phi2) cos{phi-theta)
Ry = Vy + d cos(phi2) sin(phi-theta)
* the line of sight crosses the boundary into the third case */,
else
;¥ calculate the new y and z coordinates of the reference point *,
Rz = Vz + d cos(phi2) cos(theta-phi)
Ry = Vy - d cos{phi2) sin{theta-phi)

Figure 3.5 Turn-up Algorithm.

25

A i st e i ot s AR D v 2 A o)

- oo T,

- N

>
>

] I
; :
1‘. 4
\ -
N .
f X
) .
) /* third case of viewpoint-reference point relative position *,
o else if R3>Vz and Ry<=Vy then
'; /* check if the line of sight is still in the case boundary *: :
-" if (pi/2.-phi) >= theta then :
/* calculate the new y and z coordinates of the reference point * ' .
Rz = V2 - 4 cos(phi2) cos(phi-theta)
- Ry = Vy - d cos{phi2) sin{phi - theta)
. ‘* the line of sight crosses the boundary into the fourth case *-)
-~ else
- ’* calculate the new y and z coordinates of the reference point * - .
- Rz = Vz - d cos(phi2) sin{theta-pi, 2. - phi) .
Ry = Vy - d cos(phi2) cos(theta-pi- 2. - phi) ’
N /* fourth (last)case of viewpoint-reference point relative position */ '.
N else e
'* check if the line of sight is still in the case boundary *: <
if phi >= theta then -
. ,/* calculate the new y and 2 coordinates of the reference point */ oS
- Rz = Vz - d cos{phi2} cos(phi-theta) :
- Ry = Vy - d cos{phi2) sin{phi-theta) .
" * the line of sight crosses the boundary into the first case *, K
else ¢
/* calculate the new y and z coordinates of the reference point *-
3 Rz = Vz - d cos{phi2) cos(theta-phi}) “
. Ry = Vy - d cos{phi2) sin{theta-phi) iIc
. End turn-up algorithm .
o \
- Figure 3.5 Turn-up Algorithm (continue). :i
: :
; ;
'’ ,
g R
Y -
y X
(] .
\
o .
) 26 .
d ~
\ ~
: »

........

ACALASRANERA ACA AL L ARG AL Ak g AR g Ak Al i et g St el i DA adibe "l el e i i 9 e AL RAL i ord

Begin turn-left algorithm
pi = $.1415927
theta = pi,/180. /* turning angle of 1 degree */

/* Vx,Vy,Vz and Rx.Ry,Rz are coordinates of the viewpoint and
the reference point respectively.
d is the distance between the viewpoint and the reference point.
phi2 is the angle between the line of sight and the xz-plane.
phi is the angle between the projected line of sight on the xz-plane

and the x-axis. */

* calculate the values of d. phi2, and phi */

d = sqrt{ (Vx-Rx)(Vx-Rx) - (Vy-Ry)(Vy-Ry} - (Vz-Rz)(Vz-Rz) }
phi2 = arcsin{ Vy-Ry' /d)

phi = arcsin{ Vz-Rz (d cos(phi2)) }

'™ first case of viewpoint-reference point relative position */
if Rx<=Vx and Rz<Vz then

-* check if the line of sight is still in the case boundary */
if phi > = theta then
- * calculate the new x znd z coordinates of the viewpoint and the reference point */
Rx = Vx - d cos(phi2) cos(phi-theta)
Rz = Vz - d cos{phi2) sin(phi-theta)
* the line of sight crosses the boundary into the second case */
else
* calculate the new x znd z coordinates of the viewpoint and the reference point */
Rx = Vx - d cos(phi2) cos(theta-phi)
Rz = Vz « d cos{phi2) sin{theta-phi)

* second case of viewpoint-reference point relative position *,
else if Rx< Vx and Rz~ -Vz then

* check if the line of sight is still in the case boundary */,
if {pi 2.-phi} > = theta then
* calculate the new x znd z coordinates of the viewpoint and the reference point */
Rz - Vz - d cos(phi2) sin{phi ~theta}
Rx - Vx - d cos(phi2) cos(phi-theta)
* the line of sight crosses the boundary into the third case */
else
* calculate the new x znd z coordinates of the viewpoint and the reference point *.
Rx - Vx - d cos{phi2) sin(theta-pi, 2.~ phi)
Rz = Vz - d cos(phi2) cos(theta-pi 2.~ phi)

Figure 3.6 Turn-left Algorithm.

27

B airak St maiboniAnlioogd wlk tafl Al e

/* third case of viewpoint-reference point relative position */
? else if Rx>=Vx and Rz>Vz then
) /* check if the line of sight is still in the case boundary */
- if phi >= theta then
. /* calculate the new x znd z coordinates of the viewpoint and the reference point */
Rx = Vx ~ d cos(phi2) cos{phi-theta)
' Rz = Vz ~ d cos(phi2) sin(phi-theta)
: /* the line of sight crosses the boundary into the fourth case *,
- else
: /* calculate the new x znd z coordinates of the viewpoint and the reference point */
Rx = Vx - d cos{phi2) cos{theta-phi)
Rz = Vz - d cos{phi2} sin{theta-phi)
/* fourth (last) case of viewpoint-reference point relative position */
. else
/* check if the line of sight is still in the case boundary */
if (pi;/2.-phi) >= theta then
/* calculate the new x znd z coordinates of the viewpoint and the reference point */
‘ Rx = Vx + d cos(phi2) cos{phi+theta)
y Rz = Vz - d cos(phi2) sin(phi ~theta)
; /* the line of sight crosses the boundary into the first case */

else
/* calculate the new x znd z coordinates of the viewpoint and the reference point */
Rx = Vx - d cos(phi2) sin(theta-pi/2.+phi)
Rz = Vz - d cos(phi2) cos(theta-pi /2.~ phi)

End turn-left aigorithm

Figure 3.6 Turn-left Algorithm (continue).

s

‘!

s Y

.o
f

28

e e
/

<1l

o, A N L At s . - WLt Rt ettt et et e e et e el . Lt e L
S hY -.',-.’\"\' Ve '.‘- S Y & \'*.‘ T, T O S N N L N A S

- 74'-.?-"'...

Begin turn-right algorithm
pi = 3.1415927
theta = pi/180. /* turning angle of 1 degree */

/* Vx,¥y,Vz and Rx,Ry,Rz are coordinates of the viewpoint and
the reference point respectively.
d is the distance between the viewpoint and the reference point.
phi2 is the angle between the line of sight and the xz-plane.
phi is the angle between the projected line of sight on the xz-plane
and the x-axis. */

/* calculate the values of d, phi2, and phi */

d = sqrt{ (Vx-Rx)(Vx-Rx) + (Vy-Ry){Vy-Ry) + (Vz-Rz)(Vz-Rz) }
phi2 = aresin{ | Vy-Ry /d)

phi = arcsin{ | Vz-Rz /{d cos{phi2)) }

/* first case of viewpoint-reference point relative position */
if Rx<Vx and Rz<=Vz then

/* check if the line of sight is still in the case boundary */
if (pi/2.-phi) >= theta then

/* calculate the new coordinates of the reference point */
. Rx = Vx - d cos(phi2) cos(phi+theta)
Rz = Vz - d cos(phi2) sin(phi—+theta)
/* the line of sight crosses the boundary into the second case */
else
/* calculate the new coordinates of the reference point *;
Rx = Vx + d cos(phi2) sin(theta-pi/2.+phi)
Rz = Vz - d cos(phi2) cos{theta-pi/2.+phi)

/* second case of viewpoint-reference point relative position */
else if Rx<=Vx and Rz>Vz then

/* calculate the new coordinates of the reference point */
if phi >= theta then
/™ calculate the new coordinates of the reference point */
Rz = Vz - d cos(phi2) cos(phi-theta)
Rx = Vx + d cos(phi2) sin(phi-theta)
/* the line of sight crosses the boundary into the third case */
else
/* calculate the new coordinates of the reference point *,/
Rx = Vx - d cos(phi2) cos(theta-phi)
Rz = Vz - d cos(phi2) sin(theta-phi)

Figure 3.7 Turn-right Algorithm.

29

- , L 4, PRI TR S P GO TR O R ‘l_"‘..'.‘. At ':_\" ., .:‘ . ‘-'.._L..'-' ‘.'.L(__'.;' L'.~ .A_:A_.. -

LA Jo s jend e aa ae 3 e v
CRACNARMA A NSRRI AN AL R

- W Y

/* third case of viewpoint-reference point relative position */
else if Rx>Vx and Rz>=Vz then

/* calculate the new coordinates of the reference point */
if (pi/2.-phi) >= theta then
/* calculate the new coordinates of the reference point */
A Rx = Vx + d cos(phi2) cos(phi~theta)
: Rz = Vz + d cos(phi2) sin(phi~theta)
/* the line of sight crosses the boundary into the fourth case */
else
/* calculate the new coordinates of the reference point */
Rx = Vx - d cos(phi2) sin{theta-pi/2.+phi)
Rz = Vz + d cos(phi2) cos(theta-pi/2.+phi)

/* fourth (last) case of viewpoint-reference point relative position */
else

/* calculate the new coordinates of the reference point *;
if phi > = theta then
/* calculate the new coordinates of the reference point */
Rx = Vx + d cos(phi2) cos(phi-theta)
Rz = Vz - d cos(phi2) sin(phi-theta)
’* the line of sight crosses the boundary into the first case */
else
. * calculate the new coordinates of the reference point */
Rx = Vx + d cos(phi2) cos(theta-phi)
Rz = Vz + d cos(phi2) sin{theta-phi)

End turn-right algorithm

Figure 3.7 Turn-right Algorithm (continue).

RS

PR AS

s

A AR NN
» o @

v

LR |
d et A

-

| L4 c'ﬁn'. n’.'fk(\f ‘

RIPRA R RO Rt I)
AR

0 et
voasy e

s F_*
o
AN

vy

T
Lt
LS

v -
»

et

£ ¢

-

1

*

L IR]
L]

T W TS T TNy .
] - AR AN A ERR R N AN RN R R A R Boe 4 B up aVa fhin fln Slo i Bie g Sln Sl hen e Sicete S AL u e Al e mae TR R RTINS UM L T

Begin move-forward algorithm

pi = 3.1415927 /* constant */
mrate = 0.5 /* move rate of 50 centimeters */

/* VX.¥y,Vz are view point coordinates.
Rx,Ry.Rz are reference point coordinates.
d is the distance between the viewpoint and the reference point.
phi2 is the angle between the line of sight and the xz-plane.
phi is the angle between the projected line of sight on the xz-plane
and the x-axis. */

/* calculate the values of d, phi2, and phi */

d = sqrt{ (Vx-Rx){Vx-Rx) +~ (Vy-Ry){Vy-Ry) + {Vz-Rz)(Vz-Rz) }
phi2 = aresin{ | Vy-Ry! 'd)

phi = arcsin{ | Vz-Rz ;/(d cos(phi2}) }

/* check for the first case . viewpoint-reference point relative position
and calculate the new x and z coordinates of the viewpoint and
the reference point. *;

if Rx<=Vx and Rz<Vz then
Vz = Vz - mrate cos(phi2) sin{phi) /* Vx.Vy,Vz are viewpoint coord */
Vx = Vx - mrate cos(phi2) cos(phi)
Rz = Rz - mrate cos(phi2) sin{phi) /*Rx,Ry,Rz are reference point coord*/
Rx = Rx - mrate cos(phi2) cos(phi)

/* check whether the viewpoint is above or below the reference point
and calculate the new y coordinates of the viewpoint and the
reference point. */

if Ry<Vy then

Ry = Ry - mrate sin(phi2)

Vy = Vy - mrate sin{phi2)
else

Ry = Ry -+ mrate sin{phi2)

Vy = Vy + mrate sin{phi2)

/* check for the second case of viewpoint-reference point relative position
and calculate the new x and z coordinates of the viewpoint and
the reference point. *;
else if Rx<Vx and Rz>=Vz then
Vz = Vz + mrate cos(phi2) sin(phi)
Vx = Vx - mrate cos(phi2) cos(phi)
Rz = Rz ~ mrate cos(phi2) sin(phi)
Rx = Rx - mrate cos{phi2} cos(phi)

I

[}

Figure 3.8 Move-forward Algorithm.

v e
\

-.'.:."'\>.‘-A-.-. PR \-'_ \\.’_‘. . . B . e . < e et L. - - .-~ - - . . - - N
e . ‘. J P " ST . SR T Tk 2P PSR AT N L R e St N e e e PR TN

B AN SO IP AAIY S SE AR IE D S S SO PSS N A ISR T S ‘.p\.-\...:"_e“ ~\.L-'.p,-:.{‘.l:,’A‘:‘_h':'l\:;':.\:k\:.":

/* check whether the viewpoint is above or below the reference point
and calculate the new y coordinates of the viewpoint and the reference point */
if Ry<Vy then
Ry = Ry - mrate sin(phi2)
Vy = Vy - mrate sin(phi2)
else
Ry = Ry + mrate sin(phi2)
Vy = Vy + mrate sin{phi2)

/* check for the third case of viewpoint-reference point relative position
and calculate the new x and z coordinates of the viewpoint and the reference point */
else if Rx>=Vx and Rz>Vz then
Vz = Vz ~ mrate cos(phi2) sin{phi)
Vx = Vx ~ mrate cos(phi2) cos(phi)
Rz = Rz - mrate cos(phi2) sin(phi)
Rx = Rx + mrate cos(phi2) cos(phi)

H

/* check whether the viewpoint is above or below the reference point
and calculate the new y coordinates of the viewpoint and the reference point */
if Ry<Vy then
Ry = Ry - mrate sin(phi2)
Vy = Vy - mrate sin{phi2)
else
Ry = Ry + mrate sin(phi2)
Vy = Vy + mrate sin(phi2)

/* check for the fourth case of viewpoint-reference point relative position
and calculate the new x and z coordinates of the viewpoint and the reference point */

else
Vz = Vz - mrate cos(phi2) sin(phi)
Vx = Vx + mrate cos{phi2) cos(phi)
Rz = Rz - mrate cos{phi2) sin{phi)

Rx = Rx - mrate cos(phi2) cos(phi)

/* check whether the viewpoint is above or below the reference point
and calculate the new y coordinates of the viewpoint and the reference point */
if Ry<Vy then
Ry = Ry - mrate sin{phi2)
Vy = Vy - mrate sin(phi2)
else
Ry = Ry + mrate sin(phi2)
Vy = Vy + mrate sin(phi2)

End move-forward algorithm

Figure 3.8 Move-forward Algorithm (continue).

32

e - .- e m e e e Nt e T e e e e
PRI U et T T e e e T e e e et e e e e e
i M = % S S OV P NS R RS,

y . - e -

‘ s
IV. PIPING LAYOUT ALGORITHM
A ;
4 A. THREE DIMENSIONAL PIPING LAYOUT TECHNIQUE e
R Three-dimensional piping layout can be accomplished via an interactive 4
’ computer graphics system. The method for such an operation involves mapping
y an image of the current piping system into a viewport on a graphics screen. ':
; overlaying an image of a piping component in the same viewport, manipulating “
3 the overlay image of the piping component with an interactive input device, and -
] updating the piping system.
‘ There is one major difficulty associated with 3-D piping layout via an X
interactive computer graphics system. This difficulty is with respect to the E
X problem of piping positioning which requires the translation and rotation of the o
image of a 3-D piping component to a desired position and orientation on the 2- p
- D graphics screen. A poor graphical manipulation technique can result in a
- hardly manageable and/or poorly performing system. .
. This study presents one 3-D piping layout technique. The technique is menu
. driven, with each selection being made through a three-button mouse device. Our
piping positioning method uses a technique which dynamically moves an object ! -
X around with a mouse device. This technique is known as dragging. The -
transformation (translation and rotation) of the overlay image of a piping E:
component is controlled by valuators provided by the mouse. Though a mouse -
. can provide only two valuators (horizontal and vertical), a menu can be used to y
:: support a transformation selection and only one valuator is sufficient for 3
' controlling a transformation. h
Three views of the object space are used to eliminate ambiguity. The -

orthogonal projections of the top view. front view. and side view of the layout ;
model can be selected for display during piping positioning manipulation to
clarify the position and orientation of each piping component in the piping
: system. An axis. in the screen coordinate system, is also used to provide directions

for translations and rotations of a piping component.

: 33
)

N

=
’

"
.
o

P L I P T I v e - o
B NS A "-.‘-.f.-'

________ . —'..-‘,‘-"_. A .n
et e

e I Rk S A I N B S i T L et Sl bl S Yl B el i e 4 i Bt

]

N B. THREE DIMENSIONAL PIPING LAYOUT ALGORITHM

N The piping layout algorithm is composed of the following outlined steps:

b 1. Piping system selection: Design and install a menu for piping system selection. Each
: option identifies & piping system to be laid out or modified.

~ .

“~

2. Piping component type selection: Design and install a menu for piping component type
selection. Each option identifies a type of a piping component. The standard types used are
straight pipe, elbow, tee, and reducer.

. Dimension selection: Design and install menus for pipe diameter selection and elbow
turning angle selection. Drawing a straight pipe requires the diameter and the length of the
pipe. The length is interactively defined by the distance between two points on the graphics
screen marked by the cursor. Drawing an elbow component requires a diameter and a
turning angle. Drawing a tee component and a reducer component require a set of two

diameters.

(2]

4. Display of the piping system and piping components: Display the image of the .

existing piping system according to the system identification selected from Step 1. Then
display the piping component according to the type and dimensions determined in Step 2
.: and Step 3.
. 5. Position and orientation adjustment: Design and install a menu for a piping
L component position and orientation adjustment. The menu includes translation in x- "
: direction, y-direction, z-direction, and rotations about x-axis, y-axis, z-axis, insertion, and -
deletion options. Each option with the exception of the insertion and deletion options, when -
- selected, performs a type of transformation. The rate of transformation is determined by the .
position of a valuator provided by a mouse device. Three views {top, front, side} of the K
- layout model are displayed to eliminate ambiguity during the position and orientation <
g adjustment process. .
»
N 6. Insertion and deletion of a piping component: After a piping component is
. transformed to the desired position, it can be saved and added to the existing piping layout K
. by selecting the insertion option of the menu in Step 5. If the piping component is incorrect, 3
.. it can be deleted from the screen at any time by selecting the deletion option of the same R
. menu.

The three dimensional piping layout algorithm developed from the above
y outlined steps and used in this study is in Figures 4.1 - 4.6 .

RN

W RN AN

“
“
~
~
“
o

‘F& Ty N X
N ST

b
“
-’
A)
Begin Piping Algorithm -
Display the pipe system selection menu ::
Py
i
(
select an option from the menu
. if the EXIT option is selected then
' clear the screen and branch out of the algorithm to the IRIS system N
else if the SPRINKLER option is selected then
4 system = 1 N
g branch to the View the Model Algorithm .
-~
. else if the WATER SUPPLY/DRAINAGE option is selected then e
system = 2 -:"
branch to the View the Model Algorithm
. else if COMPLETE PIPE SYSTEM is selected then :.
' system = 3 -
branch to the View the Model Algorithm g,
else if the NEW SYSTEM is selected then =
system = 4 S
branch to the View the Model Algorithm
End Piping Algorithm -
-:A
. Figure 4.1 Piping Algorithm. .
7]
v
\ _‘:‘

- Mt e ptatat. t. B
*'.“.'\4'.'\-_--_-"._-.;' -.".:‘\: —"\\ ML

. e m W ety
AL SRR A A LY SRS,

b Ty
4 1y
; N
-
o~
3 .
t Begin View the Model Algorithm "
. v
determine the piping system selected by system value from the Piping algorithm 7
initialize the scale factor, translation amount, and rotation amount —
display the image of the current piping system in the display viewport f-.
: display the "view the model" menu in the menu viewport '
. FI
: while{TRUE) v
begin '
L select an option from the menu _-
. .
L. if the TOP VIEW option is selected then 9
rotate the modified image (if any) of the current piping system 90 degrees
about x-axis and display it in the display viewport A
else if the SIDE VIEW option is selected then 7
rotate the modified image (if any) of the current piping system -90 degrees
about y-axis and display it in the display viewport o
else if the FRONT VIEW option is selected then ::
display the modified (if any) image of the current piping system ’
in the display viewport
else if the PERSPECTIVE VIEW option is selected then
rotate the modified (if any) image of the current piping system o
30 degrees about x-axis and 30 degrees about y-axis and display _-“Z
it in the display viewport o
else if the SCALE option is selected then ' -
calculate the scaling factor from the position of the mouse valuator, =
display the modified image of the current piping system in the o
i34 »

display viewport)
else if the MOVE AROUND option is selected the
calculate the translation amounts in x,y from mouse valuators,
display the modified image of the current piping system
else if the ROTATE option is selected then
calculate the amount of rotation from the position of 2 mouse valuator,

v 0.
. .
DAE A

display the modified image of the current piping system e

else if the BFRAME option is selected then ::
display the modified (if any) image of the current piping system .'_-t

if the building structural frame is not displayed then display it 3

else if it is already displayed then remove it from the screen >e

else if the DRAW PIPE option is selected then -
reinitialize the scale factor, the amount of translation, the amount of o

rotation, and display the initial image of the current piping system ~

and branch out of the algorithm to the Drawpipe Algorithm o
else if the WALKTHROUGH option is selected then o
branch out of the algorithm to the Walkthrough Algorithm o

else if the EXIT option is selected then

branch out of the algorithm to the Piping System Algorithm) '

end N
X
End View the Model Algorithm ‘E\
Figure 4.2 View the Model Algorithm.

36 .‘\

o
=~
oy

WO AT R

o
~
Y
o~
o0
i o
3 X
c | 4
b Begin Drawpipe Algorithm ;:
b N
' display the pipe type menu in the menu viewport -
J v
: select an option from the menu A
A .
[if the STRAIGHT PIPE option is selected then -]
b type = 1 3N
i branch out of the algorithm to the Dimension Algorithm
s iy
1 if the ELBOW option is selected then
[type = 2 ot
1 branch out of the algorithm to the Dimension Algorithm ’-,
if the TEE option is selected then 1
type = 3 n
branch out of the algorithm to the Dimension Algorithm
if the REDUCER option is selected then
type —= 4 o
branch out of the algorithm to the Dimension Algorithm -
if the DELETE option is selected then :
delete the last drawn piping component from the current piping system,
recursively branch back to the beginning of the algorithm
if the VIEW option is selected then
branch out of the algorithm to the View the Model Algorithm L
if the EXIT option is selected then
branch out of the algorithm to the Piping System Algorithm ,

End Drawpipe Algorithm

Figure 4.3 Drawpipe Algorithm. :;-:

“ I

M ANS .

o dn e A

CeLleld s

R i i ' A AN At e el il e A L e el el i it iyt il St et Jadh S AR ANV 40 A W 200 R e 4 e

Begin Dimension Algorithm
check the piping component type value passed from the drawpipe algorithm

if type = 1 or type = 2 then
display the pipe diameter selection menu

select an option from the menu

if a pipe diameter is selected then
mark a point on the screen with the cursor and a mouse button to
indicate the initial position of the drawing piping component
if type = 1 then
mark another point to determine the length of the pipe,
calculate the length, and branch out of the algorithm and pass
the diameter value and the length value to the Insertpipe Algorithm

else if type = 2 then
display the turn angle selection menu
select an option for the turn angle value, branch out of the
algorithm and pass the selected turn angle value to the Insertpipe Algorithm
else if the VIEW option is selected then
branch out of the algorithm to the View the Model Algorithm
else if type = 3 or type = 4 then
display the pipe diameters selection menu
select an option from the menu
if a pair of diameters is selected then
branch out of the algorithm and pass the diameter values to
the Insertpipe Algorithm
else if the EXIT option is selected then

branch out of the algorithm to the Piping System Algorithm

End Dimension Algorithm

Figure 4.4 Dimension Algorithm.

38

. s e e e

| R

PR

Begin Insertpipe Algorithm

P

display three views of the current piping system and three views of the

overlay image of the selected piping component with x-,y-.z- axes in the 3
display viewport v
display the position adjustment menu in the menu viewport 5
v
while(TRUE)
begin A
X select an option from the menu =
g
if a MOVE option (MOVE in x-, y-, or z- direction) is selected then o
calculate the translation amount from the position of a mouse valuator,
display three views of the current piping system and the modified .
three views of the overlay image of the piping component and axes =3
:: else if a ROTATE option {ROTATE about x-, y-, or z- axis) is selected then By
Y calculate the rotation amount from the position of a mouse valuator, :'
' display three views of the current piping system and the modified
three views of the overlay image of the piping component and axes .
else if the VIEW SELECTION option is selected then :—
branch out of the algorithm to the Selectview Algorithm :'
else if the SAVE option is selected then ’
' insert the piping component into the current piping system, K
. display the updated current piping system without axes, and !
b branch out of the algorithm to the Drawpipe Algorithm 4
else if the DELETE optiun is selected then !
delete the overlay image of the piping component and axes from the screen
else if the EXIT option is selected then _'
branach out of the algorithm to the Piping System Algorithm .
end _
. End Insertpipe Algorithm
S Figure 4.5 Insertpipe Algorithm. N
.‘\
- 39 =

'l .

N

Y

S

\‘

‘!

¥,

N

‘ Begin Selectview Algorithm

- display the view selection menu in the menu viewport

’.

- while(TRUE)

= begin

select an option from the menu

o

- if the TOP VIEW option is selected then

- display the top view of the piping system and the top view of the
- overlay image of the piping component in the display viewport

M

else if the FRONT VIEW option is selected then

- .i splay the front view of the piping system and the front view of the
. overlay image of the piping component in the display viewport

Y

< else if the SIDE VIEW option is selected then '
- display the side view of the piping system and the side view of the

overlay image of the piping component in the display viewport

< se
» else if the THREE VIEWS option is selected then

-3 display the three views of the piping system and the three views of the
:}; overlay image of the piping component in the display viewport

i else if the EXIT option is selected then

- branch out of the algorithm to the Insertpipe Algorithm

‘o
:' end
Y End Selectview Algorithm

- Figure 4.6 Selectview Algorithm.

v

J
N

¥

3
)

N

N 40

Y

-~

N

~ e w

R T A . . v A T a®e et e e T A & e e
TN et T A e p P e e e B e Rt AT e T T T T T

V. PROGRAM IMPLEMENTATION DETAILS

A multi-file program. the implementation of the Walkthrough Algorithm and
the 3-D Piping Layout Algorithm in the C programming language, is included in
the appendix of this study. The program runs on the IRIS Turbo 2400
Workstation under the command "building".

The execution of the command "building" displays the program title (Figure
5.1) on the screen. From this point, the rest of the operation is self evident from
the display menus. The mouse is the only interactive input device. Hitting a
mouse button changes the picture on the screen to the picture of the Piping
System Menu (Figure 5.2).

The Piping System Menu is designed to offer five options: Sprinkler System.
Water Supply/Drainage System, Complete Piping System, New Piping System.
and Exit to the System. The Sprinkler system. the Water Supply/Drainage
System, and the Complete Piping System are predefined for the test runs. The
New Piping System is the layout model without an existing piping system. This
option is used for the demonstration of a piping layout operation, via an
interactive computer graphics system. The Exit to the System option terminates
the program.

The user begins the piping layout operation by selecting a piping system
option from the Piping System Menu. The selection of a piping system clears the
screen then displays the View the Model Menu (Figure 5.3) in the menu viewport,
and displays a layout model with the selected piping system in the display
viewport.

The View the Model Menu presents the user with options to view the top
view. front view. side view. or perspective view of the layout model. options to
scale the image of the layout model up or down. to move the scaled image around
on the screen. and to rotate it about the y-axis. Other available options are the
Drawpipe option, the Walkthrough option, and the Exit to Piping System
options.

The selection of the Drawpipe option, from the View the Model Menu,
displays the Piping Subsystem Menu (Figure 5.4). This menu is used to specify
the color of a piping component. In this study. cold water pipes are drawn in
blue, hot water pipes are drawn in red, and drainage pipes are drawn in black.
After the selection of an option to indicate the color of a piping component, the

41

- -

1t

|

Component Type Menu (Figure 5.3) is displayed for the selection of the piping {
component to be drawn. The Component Type Menu offers four types of N
components: straight pipe. elbow, tee, and reducer. Each type requires some N
dimensions before it can be drawn. The straight pipe requires a pipe diameter . ':
which is selected from a menu, and the length of the pipe which is specified by :'
marking two points on the screen as directed by the program. The elbow) :
component requires a pipe diameter and a turning angle, both are selected from —
menus prompted by the program. The tee component and the reducer component <
require a set of two diameters. selected from a menu. Before a piping component ,
is drawn, the program instructs the user to mark the position of the component to ::
be drawn on the screen. A grid is overlaid in the display viewport to aid the user
in specifying the piping position (xy-plane). An image of a piping component is -
overlaid in the display viewport after piping dimensions and position are specified. ,:':‘
The position and orientation of the overlay image of the piping component is &
adjusted via the Position Adjustment Menu (Figure 5.6). The menu offers M
options for viewing the overlay image of the piping component in a particular N
view (top. front. side), for moving and rotating the overlay image of the piping o
component to a desired position and orientation. The overlay image of the piping :
component is added to the current piping system by the selection of the Insert 2
option, or removed from the screen by the selection of the Delete option from this ¥ A
menu. :::
After the insertion or deletion of a piping component, the View the Model :f.
Menu is displayed again so that the modified piping system can be viewed from <
different viewpoints. At this point. the previously inserted pipes can be deleted, in
the reverse order of their insertions, starting from the most recently inserted pipes. K.
by the selection of the View the Model option. The user enters the building -4
walkthrough mode to view the modified piping system in a walkthrough fashion o
by the selection of the Walkthrough option.
The selection of the Walkthrough option clears the screen and sets it up for
the walkthrough operation. The set up divides the screen into four display areas :::
(Figure 5.7). The first area, the largest one, is used to display the layout model (a \
building model with a selected piping system). The visual effect for a building
walkthrough movement, occurs in this display area. The second area is used to
display static images of the orthogonal projections of the front view and the side
view of the layout model. The third display area is used to display a perspective I:'-*
projection of the layout model. An image of a marker indicates the relative u
42 N
~
3

L PRI S S O
Lo - e T
PV TN et bdaba ha b £ 22 2 4 % g

position of the viewer to objects in the world coordinate system. The fourth area

is used to display an instruction for building walkthrough control, an instruction
for picking an option, and pick options. The cursor is initially displayed in the
first area at the bottom of the screen and can be moved around with the mouse.
After the screen is set up for the building walkthrough operation, the mouse
becomes the main control. Its buttons are used in generating inputs for
walkthrough movements. Its movement moves the cursor on the screen. When
the cursor is moved inside a pick option boundary box and the left mouse button
is pressed, the selected option is made. When it is outside pick option boundary
boxes, holding down a mouse button or a combination of mouse buttons causes
changes in the picture on the screen. This action produces the visual effect of the
selected building walkthrough movement. The walkthrough control instruction is
displayed in the fourth display area. It provides information for generating an

input for each type of building walkthrough.

43

P s
)

-

...

e |

eI St & AN M TR R i A N ML I AN SR A GG A g (DA M S gl g -l i ok at o M= gt I c St Shan e fiec Sk s Bl
Ly
»
S

Hit any button to start.

Figure 5.1 The Tile of the Program.

Sprinkler System

Water Supply/Drainage

Complete Piping System

New Piping System

EXIT TO THE SYSTEM

Figure 5.2 Piping System Menu.

D L I T C a® e Tt ettt et et ate T erate~ - . - -
- . . e T el e 5 . e LIPUL AL I Tt et W e ™ L T I
- (L . - N T . - - DI SR L

Front View
Side View
Perspective View
: Scale Up/Down
Move
Rotate
Building Frame Toggle
DRAV PIPE 2
BUILDING WALKTHROUGH ¥
EXIT TO PIPING SYSTEM MENU

Figure 5.3 View the Model Menu.

’ .\. '-. '0. °, 4 ",

et e v v
I AL

flv'

LA

. Hot Water Pipe
4 Cold Water Pipe

Drainage Pipe
EXIT TO PIPING SYSTEM MENU

Figure 6.4 Piping Subsystem Menu.

..................

PHVFYru

ﬁ Elbow

. Tee

j Reducer ;
5 Delete the Last Draw

‘: View the Model b

EXIT TO PIPING SYSTEM MENU

o Figure 5.5 Component Type Menu. :
POOLIOLMN L._.;_._._.. PSRN Ed .
. in X~Direction r
i in Y-Direction E
N Move in Z-Direction i
- Rotate about X-Axis .
f; Rotate about Y-Axis R
; Rotate about Z-Axis ;
- SELECT VIEW 4
SAVE
DELETE ;
3 EXIT TO PIPING SYSTEM MENU E
' Figure 5.6 Position Adjustment Menu.] .
5 :
: 3

46

| AN O}

d

LIRS DA DR Y Ba 0 ¢ 3 o v - P

*dn q9g usaadog

X YO RN | |ty e

Vi Sul et Yl p . g Oy e 2
f N 1 a . i) - 2y e
|~»- Oﬂ PR .;. A -.. PR \-N 4, ~«.‘bn LT A S ..- L T .» -.~ ..n \o. PR

y3noaysyren 3urpring L'g Sandiy

v s
SENDENCAELOM §

NNIN
RALSAS ONIdId Ldsdy

oL LIXH

furyo1d JO0F BUOT}ONIYBUT

unl punoay 372I1)
-N1 umoQq uJang,
- dn uang
q-1 paea)osyg IAON
-N- pIemIoy IAON
--1 33§97 uanj
i-- IYBry uany
NoLLnd NOILOV

TOYINOO NOLLNG ASNON

‘P VAUV AVI4SId

*Japo® 3nofe] ay3 jo LeJdeip ormeuLg

T VHHV AVIJSIA

*3utodmatA ay3 jJo uorjwOO]

9AT3B[2Jd 9Y3 923WDTPUT YD TYM

Jaaew ayq jo Leydeip o>twvudp
pue

12powm 3nofs]

0:& JO mata aarjoadsaad

ay3 jo Keydstp o°t3u3g
‘€ VHdY AVIdSId

‘19pow 3nofe] ayl jo

MOTA 3PISs pusB madatA juca] ¥yl jo Aejdsesip oi3e3g

‘e VIYV AVI4SId

PRCPN ST PRI NPT IRI) - 2 - » e v . 2 P

%A % 4 %

47

L g
.

P

il Y

Ty

L i i

s arasan e & oo

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This study demonstrates the interactive techniques for a building
walkthrough mechanism and for the placement of 3-D piping into a 3-D building
using a 2-D graphics display and a mouse device. The test run results indicate
that the performance (speed) of building walkthrough and piping positioning
mechanisms depends on the model complexity. The model which includes the
entire piping system requires much more time to produce a change in the picture
than one that includes just a particular piping system. It is recommended that
the designer select a single piping system for manipulation for fast interactive
response. Each layout model with a particular piping system can be viewed
together either in building walkthrough fashion or by manipulating the image of
the layout model on the screen. Though the test run results indicate that the
performance of the walkthrough mechanism depends on the complexity of the
layout model, the techniques are. in some extent, useful and viable to a piping
layout task. The technique of placing 3-D piping into a 3-D building is made
simple and efficient, by using a menu package to generate input commands. The
use of the mouse valuator to control the image transformation for piping
positioning is fairly accurate.

The study also illustrates the capabilities of interactive computer graphics as
a computer aided design tool in a piping layout application. The drawing and
modification of a piping layout system is accomplished much faster than
conventional drafting techniques. Unlike conventional drafting techniques which
limit one to only three views (top, front, side), the layout model drawn by an
interactive computer graphics system can be viewed from many different

viewpoints in the world space and at any desired scale factor.

B. LIMITATIONS AND RECOMMENDATIONS
The Walkthrough Algorithm and the 3-D Piping Algorithm developed and
used in this study have some limitations:

1. The algorithms do not support hidden surface elimination. The components of the layout
models are wire frame drawings and are displayed in double buffer mode for fast response
interaction. The images of objects on the screen depend on the order of the display
commands. The image of an object, in spite of the closer distance to the viewer. can not be
seen if it is drawn before the larger image of another object that is drawn at the same

48

L4

"|< '.l L .‘{

. Y

AR
-

A

2

N T T)

v
A

- . -
LI I
AN A

..‘ .f 'l’.'l' -l, .

v, Y,
»|

e
3 l‘l‘.f“ AR

¢ l;‘:'l.' ._"._ i

.
.,

YRR

Ll

£,
e 5 _*

. ..
.‘
.

PR i e

PP '}

eve ®Te &

J N R ST I TR STV i L L A R LR S KR

coordinate location. Even though three views of the object space are displayed, ambiguity
still exists in a complex piping system.

2. The algorithms do not utilize a file system to support the updating of the layout model. Any
modification to a piping system is maintained during the walkthrough and the 3-D piping
layout operation, as long as the program does not exit to the UNIX system.

3. The algorithms do not utilize a pick mechanism for the identification of objects in the world
coordinate system that require editing. Hence the deletion of a piping component from a
piping system is designed to default to the most recently inserted component. However,
deletion of a number of inserted components can be done one at a time according to the
sequence of their insertion.

With these limitations, the interactive techniques and algorithms presented in
this study are nct yet practical for a layout task in a complex industrial
processing plant. Additional studies in the areas of hidden surface elimination, file
access. and graphical editing are recommended for the improvement of the

algorithms.

49

-~

e e N L N L e T T N TN T VA Wy

LR T W),

BIBLIOGRAPHY

Foley J. D., and Van Dam A., Fundamentals of Interactive Computer Graphics ,
Addison-Wesley, 1984.

Gardan Y., Lucas M., and Budynas R. G., Interactive Graphics in CAD , Unipub.,
1984.

Naval Postgraduate School Report NPS 52-85-012, Workstation Graphics
Capabilities for the 1990’s and Beyond , by M. J. Zyda, September 1985.

Silicon Graphics Incorporation. IRIS User’s Guide Version 2.0 Update , document
number 5001-051-001-1, 1985.

Gaddis M. E.. Menu Package .program written for the IRIS 2400 System at the
Naval Postgraduate School, 1985.

......

INITIAL DISTRIBUTION LIST

No. Copies

, 1. Defénse Technical Information Center 2

N Cameron Station
Alexandria, Virginia 22304-6145

Library Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

Chairman (Code 52)

Department of Computer Science o
Naval Postgraduate School -

Monterey, California 93943

Computer Technology Programs (Code 37)
Naval Postgraduate School
Monterey. California 93943

Michael J. Zyda {Code 52Zk)
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

)

AR AN

’

Ay

o+

6. LCDR Paul W. Callahan (Code 52Cs) 1

Department of Computer Science :»,_
Naval Postgraduate School Y
Monterey, California 93943 %

j-;

fl

Office of the Air Attache’ 2
The Royal Thai Embassy

5600 16th St., N.W,
Washington D.C. 20011

. FLT LT Surasak Mungsing
- 13/2 Tanintorn Village

Wipawadee-Rangsit Rd., A
Bangkok 10210, Thailand o

Cm Tt et e " L™ .
- -, - e T h ' e " et T k" VLt P o
My W, @ IR -

]
[—

N
X

g N O

MRCRAR L TR PR

o D D NS
% LR SRR R
FRCRIDAAEIRG AT

